Molecular pathway identification using biological network-regularized logistic models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Readmission Classification Using Stacked Regularized Logistic Regression Models

BACKGROUND Regulations and privacy concerns often hinder exchange of healthcare data between hospitals or other healthcare providers. Sharing predictive models built on original data and averaging their results offers an alternative to more efficient prediction of outcomes on new cases. Although one can choose from many techniques to combine outputs from different predictive models, it is diffi...

متن کامل

Network-regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery

Molecular profiling data (e.g., gene expression) has been used for clinical risk prediction and biomarker discovery. However, it is necessary to integrate other prior knowledge like biological pathways or gene interaction networks to improve the predictive ability and biological interpretability of biomarkers. Here, we first introduce a general regularized Logistic Regression (LR) framework wit...

متن کامل

Simulation-based Regularized Logistic Regression

In this paper, we develop a simulation-based framework for regularized logistic regression, exploiting two novel results for scale mixtures of normals. By carefully choosing a hierarchical model for the likelihood by one type of mixture, and implementing regularization with another, we obtain new MCMC schemes with varying efficiency depending on the data type (binary v. binomial, say) and the d...

متن کامل

Efficient L1 Regularized Logistic Regression

L1 regularized logistic regression is now a workhorse of machine learning: it is widely used for many classification problems, particularly ones with many features. L1 regularized logistic regression requires solving a convex optimization problem. However, standard algorithms for solving convex optimization problems do not scale well enough to handle the large datasets encountered in many pract...

متن کامل

High - Dimensional Ising Model Selection Using 1 - Regularized Logistic Regression

We consider the problem of estimating the graph associated with a binary Ising Markov random field. We describe a method based on 1-regularized logistic regression, in which the neighborhood of any given node is estimated by performing logistic regression subject to an 1-constraint. The method is analyzed under high-dimensional scaling in which both the number of nodes p and maximum neighborhoo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Genomics

سال: 2013

ISSN: 1471-2164

DOI: 10.1186/1471-2164-14-s8-s7